Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fluids Barriers CNS ; 21(1): 24, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439105

RESUMO

Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) that can present across the age spectrum, highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.


Assuntos
Hidrocefalia , Hipertensão Intracraniana , Humanos , Hidrocefalia/genética , Hemorragia Cerebral , Plexo Corióideo , Hidrodinâmica
2.
Biol Open ; 12(9)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37622734

RESUMO

Stem-cell-based embryo models have allowed greater insight into peri-implantation mammalian developmental events that are otherwise difficult to manipulate due to the inaccessibility of the early embryo. The rapid development of this field has resulted in the precise roles of frequently used supplements such as N2, B27 and Chiron in driving stem cell lineage commitment not being clearly defined. Here, we investigate the effects of these supplements on embryoid bodies to better understand their roles in stem cell differentiation. We show that Wnt signalling has a general posteriorising effect on stem cell aggregates and directs differentiation towards the mesoderm, as confirmed through the upregulation of posterior and mesodermal markers. N2 and B27 can mitigate these effects and upregulate the expression of anterior markers. To control the Wnt gradient and the subsequent anterior versus posterior fate, we make use of a BMP4 signalling centre and show that aggregates in these conditions express cephalic markers. These findings indicate that there is an intricate balance between various culture supplements and their ability to guide differentiation in stem cell embryo models.


Assuntos
Embrião de Mamíferos , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Diferenciação Celular , Via de Sinalização Wnt , Linhagem da Célula , Mamíferos
3.
Gene Ther ; 30(9): 659-669, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35790793

RESUMO

Autism spectrum disorders (ASDs) are a set of disorders characterised by social and communication deficits caused by numerous genetic lesions affecting brain development. Progress in ASD research has been hampered by the lack of appropriate models, as both 2D cell culture as well as animal models cannot fully recapitulate the developing human brain or the pathogenesis of ASD. Recently, cerebral organoids have been developed to provide a more accurate, 3D in vitro model of human brain development. Cerebral organoids have been shown to recapitulate the foetal brain gene expression profile, transcriptome, epigenome, as well as disease dynamics of both idiopathic and syndromic ASDs. They are thus an excellent tool to investigate development of foetal stage ASDs, as well as interventions that can reverse or rescue the altered phenotypes observed. In this review, we discuss the development of cerebral organoids, their recent applications in the study of both syndromic and idiopathic ASDs, their use as an ASD drug development platform, as well as limitations of their use in ASD research.


Assuntos
Transtorno do Espectro Autista , Animais , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Encéfalo/metabolismo , Modelos Animais , Organoides/metabolismo , Organoides/patologia , Fenótipo
4.
Stem Cell Rev Rep ; 19(1): 104-113, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308705

RESUMO

By virtue of its inaccessible nature, mammalian implantation stage development has remained one of the most enigmatic and hard to investigate periods of embryogenesis. Derived from pluripotent stem cells, gastruloids recapitulate key aspects of gastrula-stage embryos and have emerged as a powerful in vitro tool to study the architectural features of early post-implantation embryos. While the majority of the work in this emerging field has focused on the use of gastruloids to model embryogenesis, their tractable nature and suitability for high-throughput scaling, has presented an unprecedented opportunity to investigate both developmental and environmental aberrations to the embryo as they occur in vitro. This review summarises the recent developments in the use of gastruloids to model congenital anomalies, their usage in teratogenicity testing, and the current limitations of this emerging field.


Assuntos
Gástrula , Células-Tronco Pluripotentes , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário , Mamíferos
5.
Nat Commun ; 11(1): 2782, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493987

RESUMO

The transcriptional repressor Blimp1 controls cell fate decisions in the developing embryo and adult tissues. Here we describe Blimp1 expression and functional requirements within maternal uterine tissues during pregnancy. Expression is robustly up-regulated at early post-implantation stages in the primary decidual zone (PDZ) surrounding the embryo. Conditional inactivation results in defective formation of the PDZ barrier and abnormal trophectoderm invasion. RNA-Seq analysis demonstrates down-regulated expression of genes involved in cell adhesion and markers of decidualisation. In contrast, genes controlling immune responses including IFNγ are up-regulated. ChIP-Seq experiments identify candidate targets unique to the decidua as well as those shared across diverse cell types including a highly conserved peak at the Csf-1 gene promoter. Interestingly Blimp1 inactivation results in up-regulated Csf1 expression and macrophage recruitment into maternal decidual tissues. These results identify Blimp1 as a critical regulator of tissue remodelling and maternal tolerance during early stages of pregnancy.


Assuntos
Decídua/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Transcrição Gênica , Animais , Decídua/ultraestrutura , Ectoderma/metabolismo , Ectoderma/ultraestrutura , Implantação do Embrião/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética , Gravidez , Regiões Promotoras Genéticas , Trofoblastos/metabolismo , Trofoblastos/ultraestrutura , Regulação para Cima/genética
6.
Development ; 144(8): 1450-1461, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28289135

RESUMO

The separation of embryonic from extra-embryonic tissues within the inner cell mass to generate the epiblast (EPI), which will form the new organism, from the primitive endoderm (PE), which will form the yolk sac, is a crucial developmental decision. Here, we identify a chromatin modifier, Satb1, with a distinct role in this decision. Satb1 is differentially expressed within 16-cell-stage embryos, with higher expression levels in the inner cell mass progenitor cells. Depleting Satb1 increases the number of EPI cells at the expense of PE. This phenotype can be rescued by simultaneous depletion of both Satb1 and Satb2, owing to their antagonistic effect on the pluripotency regulator Nanog. Consequently, increasing Satb1 expression leads to differentiation into PE and a decrease in EPI, as a result of the modulation of expression of several pluripotency- and differentiation-related genes by Satb1. Finally, we show that Satb1 is a downstream target of the Fgf signalling pathway, linking chromatin modification and Fgf signalling. Together, these results identify a role for Satb1 in the lineage choice between pluripotency and differentiation and further our understanding of early embryonic lineage segregation.


Assuntos
Linhagem da Célula , Cromatina/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Transdução de Sinais , Animais , Contagem de Células , Linhagem da Célula/genética , Desenvolvimento Embrionário/genética , Endoderma/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fenótipo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/genética , Fatores de Tempo , Fatores de Transcrição/metabolismo
7.
Cell ; 165(1): 61-74, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27015307

RESUMO

The major and essential objective of pre-implantation development is to establish embryonic and extra-embryonic cell fates. To address when and how this fundamental process is initiated in mammals, we characterize transcriptomes of all individual cells throughout mouse pre-implantation development. This identifies targets of master pluripotency regulators Oct4 and Sox2 as being highly heterogeneously expressed between blastomeres of the 4-cell embryo, with Sox21 showing one of the most heterogeneous expression profiles. Live-cell tracking demonstrates that cells with decreased Sox21 yield more extra-embryonic than pluripotent progeny. Consistently, decreasing Sox21 results in premature upregulation of the differentiation regulator Cdx2, suggesting that Sox21 helps safeguard pluripotency. Furthermore, Sox21 is elevated following increased expression of the histone H3R26-methylase CARM1 and is lowered following CARM1 inhibition, indicating the importance of epigenetic regulation. Therefore, our results indicate that heterogeneous gene expression, as early as the 4-cell stage, initiates cell-fate decisions by modulating the balance of pluripotency and differentiation.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição SOXB2/metabolismo , Animais , Blastocisto/metabolismo , Fator de Transcrição CDX2 , Epigênese Genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Análise de Célula Única , Fatores de Transcrição/genética
8.
Nat Methods ; 12(6): 519-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25915121

RESUMO

The simultaneous sequencing of a single cell's genome and transcriptome offers a powerful means to dissect genetic variation and its effect on gene expression. Here we describe G&T-seq, a method for separating and sequencing genomic DNA and full-length mRNA from single cells. By applying G&T-seq to over 220 single cells from mice and humans, we discovered cellular properties that could not be inferred from DNA or RNA sequencing alone.


Assuntos
DNA/genética , Genômica/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Mensageiro/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...